

Design and manufacturing of a flexible gripper for dexterous manipulation

ANR Project : ANR-20-CE33-0005 MANIMAT

Baptiste Kraehn*, Laurence Meylheuc, Olivier Piccin ICube (UMR CNRS 7357) – INSA Strasbourg, France

Corresponding author: baptiste.kraehn@insa-strasbourg.fr

MANIMAT Project

- Dexterous MAN/pulation with active and soft MATerials
- Adaptability to the versatility of object grasping
- Modification of the object configuration from inside the soft hand

Main research axes of the thesis

- Characterization of soft materials (mostly silicones) and active elements for simulation-driven design
- Multi-material fabrication with a focus on manufacturing repeatability

Preliminary work

Soft finger design, simulation and manufacturing

- Design and fabrication of a pneumatic finger (*PneuNet* geometry [1]) with two independent air chambers (centralized air supply on the fixed part of the finger)
 - Material characterization (molded silicones)
 - Simulation-driven design of the finger
- Study of the relationships between process parameters and product properties

Dexterity challenge

In-hand manipulation

- Spatial manipulation of an object in an arbitrary way between two stable gripping positions [2]
- Requirements for the fingers:
 - > Minimum two independent bending zones: bending close to 90°
 - \succ Possibility to make a S-shape with the finger for thin objects gripping

Intended architecture

Multi-finger hand: design of a finger and building of the hand by a finger combination

Soft hand with active materials

Manufacturing method

Molding technologies

- > Wide variety of materials and elements that can be integrated into the soft matrix
- > Quality of product properties

Actuation

- Pneumatic energy as major source [3]
 - High force generation
 - Large stroke

Additional functions

- Tunable rigidification: increased hand gripping ability (SMA or other active materials)
- Sensing: precise hand control for dexterous manipulation

Material characterization

- SMA wire experimentations
- Study of representative geometries and parameters for the simulation of soft and active materials

Fabrication repeatability in soft robots

- Testing of functional element integration methods
- Determination of process properties
- Characterization and improvement of manufacturing repeatability [4]

[1] B. Mosadegh et al., "Pneumatic Networks for Soft Robotics that Actuate Rapidly," Advanced Functional Materials, 2014.

[2] S. Abondance, C. B. Teeple, and R. J. Wood, "A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation," IEEE Robotics and Automation Letters, Oct. 2020.

[3] A. Pagoli et al., "Review of soft fluidic actuators: classification and materials modeling analysis," Smart Mater. Struct., Dec. 2021.

[4] F. Kaasik et al., "Scalable fabrication of ionic and capacitive laminate actuators for soft robotics," Sensors and Actuators B: Chemical, Jul. 2017.