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- f(t) : human fatigue at time t                
- a(t) : robots action or E.E pose selected at t 
- rh(t) : human's reaction at t                
- rho(t) : observed human reaction at t         
- f(t+1) :  human fatigue at end of reaction   
- r(f(t+1)) : the reward obtained as a function
of new fatigue 

- Partially Observable Markov
Decision Processes

- An action cycle in our POMDP:

- Ma's Dynamic Fatigue Model based
on joints torques [2]:

- Fatigue considered as a loss in
torque generation capacity:

-            : current maximum exertable torque 
of joint i                                          
-            : maximum exertable torque of joint i
-            : load torque at joint i                      
- k, R     : Relatively the fatigue and recovery 
coefficient of the model

How can we use cobots to mitigate fatigue in 
repetitive co-manipulation?

- Repetitive work, awkward postures, and forceful 
work lead to work related musculoskeletaldisorders 
(WMSD) [1].                                               
-Cobots End Effector(E.E) pose can influence 
human reaction.
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- Partially observable Monte Carlo
Planning (POMCP)  is used to
generate the action selection policy
of the POMDP.

- LQP Controller [4]:

Subject to:
   - Dynamic Equations
   - Joints actuation limits

- The LQP finds the best trajctory
(including torque profile) that
minimuizes the wighted sum of
tasks costs.                            

- The tasks and their weights
determine the human strategy.

- For an expert individual, POMCP
provides the best action selection
policy.
- Further testing is needed  to
draw conclusions for non experts.
- Planning should be tested in
scenarios with more robot actions.


